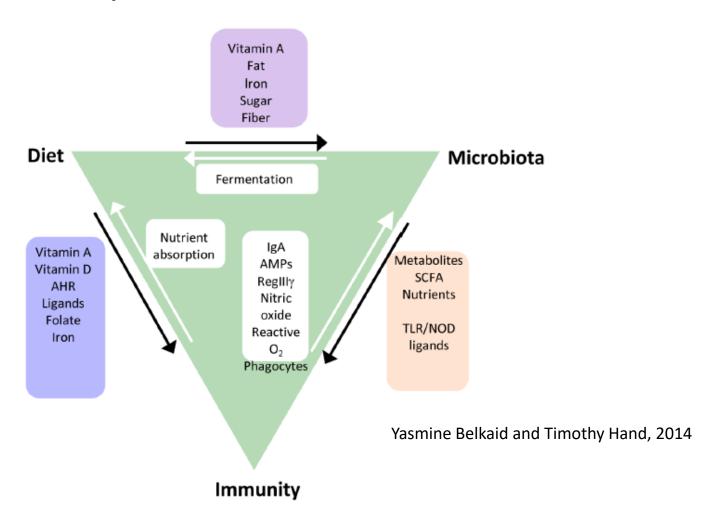
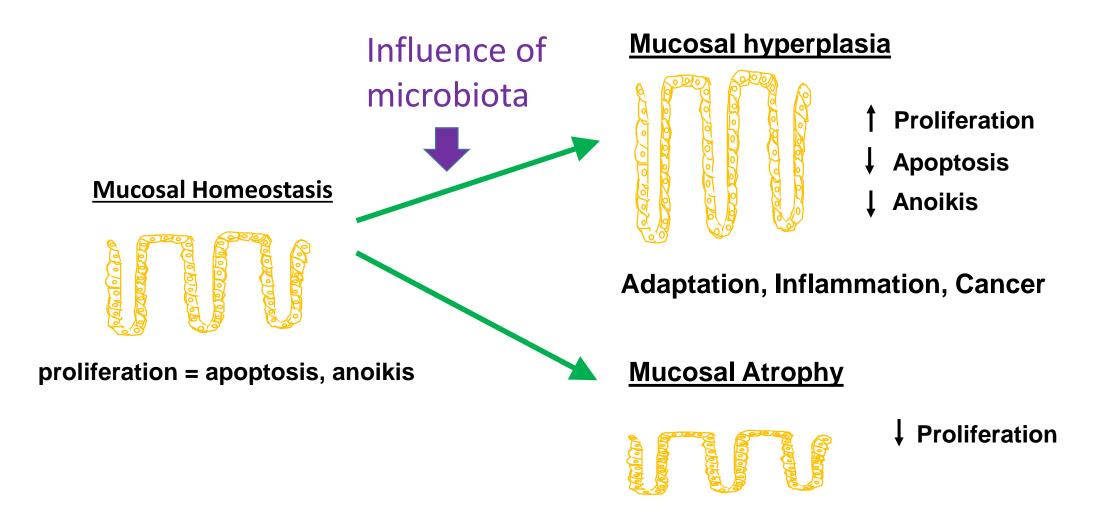

Microbiota

Dysbiosis – a cause or consequence of neurological disease?

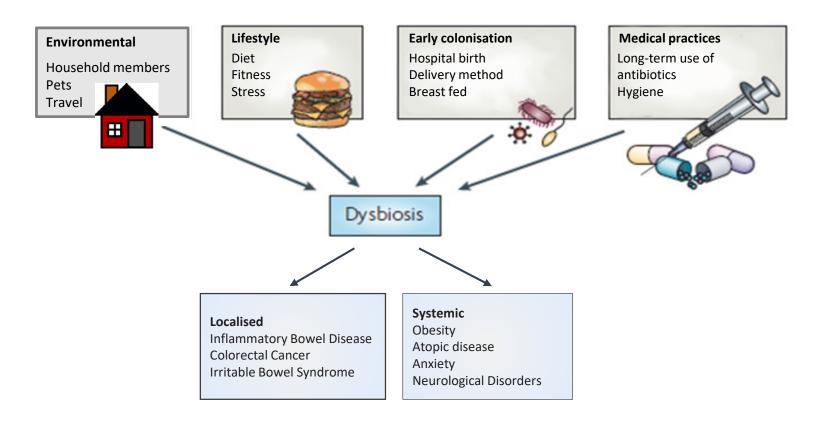
Dr Rachael Rigby rachael.rigby@lancaster.ac.uk

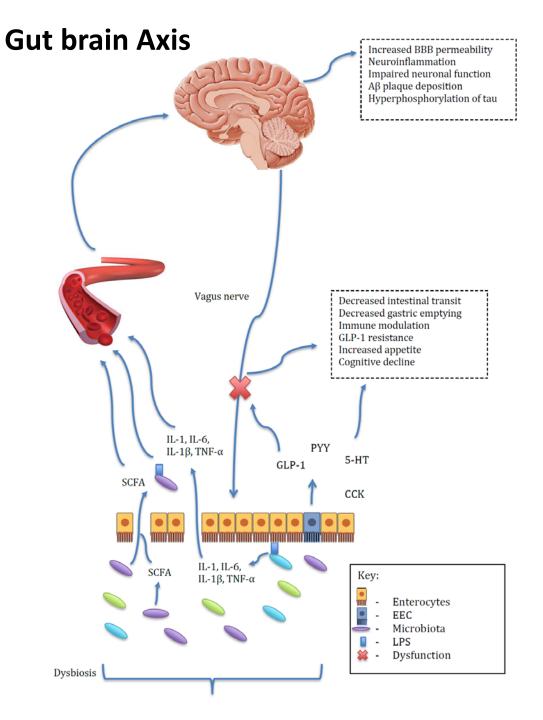

Commensal microflora

Commensalis "sharing the same table"



- 10-100¹² microorganisms populate the intestine with highest levels in the colon
- Developmental changes in numbers, types and location
 - Bacteroides
 - Clostridium
 - Lactobacillus
 - Streptococci
- Activate Toll-like receptors (TLR) and immune system
- No maintained inflammatory response in healthy individuals


Multiple roles of microbiota



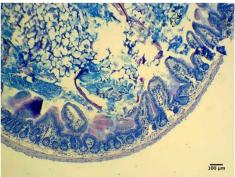
Microbiota impact epithelium regeneration and permeability of gut barrier

Fasting, Germ free, Ulcerative colitis

Organism and model	Age	Phylum level	Author
AD	Elderly	↓ Firmicutes, Actinobacteria	Vogt et al.,
patients		↑ Bacteroidetes	2017
AD	Elderly	↓ Bacteroidetes	Provasi et
patients		↑ Firmicutes	al., 2017
Mice	1 month	No significant differences	Harach et
(APP/PS1)			al., 2017
	3 month	No significant differences	
	8 month	↓ Firmicutes, Verrucomicrobiota,	
		Actinobacteria, Proteobacteria	
		↑ Bacteroidetes, Tenericutes	
Mice	6 week	No significant differences.	Brandscheid
(5xFAD)			et al., 2017
	9 week	↓ Bacteroidetes	
		↑ Firmicutes	
	18 week	No significant differences	

Table 1. Overview of studies investigating dysbiosis at the phylum level in patients and animal models of AD.

APP/PS1 mouse model of Alzheimer's disease


- Express disease-associated mutant forms of human amyloid precursor protein (APP) and presenilin 1 (PS1)
- Transgenic mice have been able to recapitulate many, although not all, of the key features of AD at a behavioural and cellular level
- Develop amyloid plaques around
 7 months of age

WT APP/PS1

Ileum

Caecum

Colon

PAS stained sections of intestine

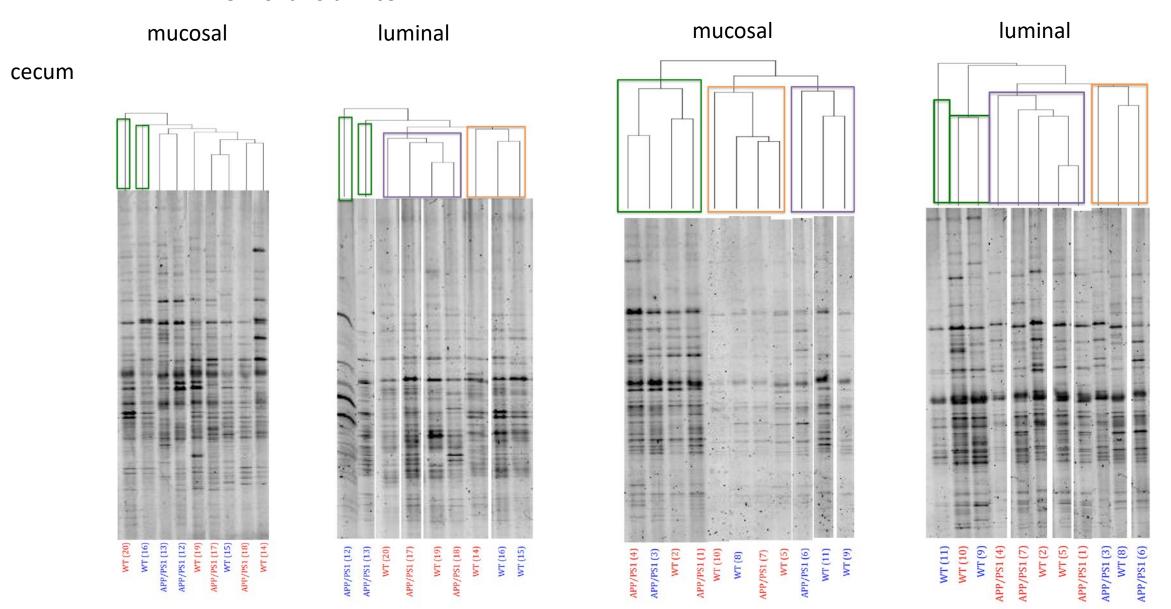
Morphometry

	lleum (villus)	Ileum(crypt)	Caecum	Colon
3 Month	↑ p = 0.31	↑ p = 0.17		↓ p = 0.003
7 Month	↑ p = 0.17	↓ p = 0.71	↑ p = 0.38	↑ p =0.82
15 Month	↑ p = 0.17	↑ p = 0.19	↓ p = 0.38	↓ p =0.82

Table 8: Summary of statistical analysis of villus height and/or crypt depth Average villus height and/or crypt depth in the ileum, caecum and distal colon in three, seven and fifteen month WT and APP/PS1 mice. \uparrow = increase, \downarrow = decrease in APP/PS1 compared to WT.

Epithelial cell lineage/function

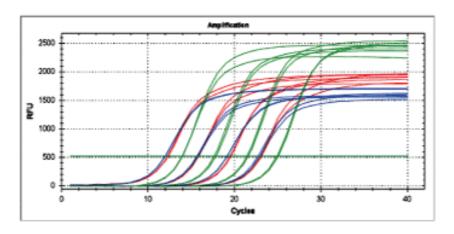
	lleum (villus)	Ileum (crypt)	Caecum	Colon
3 Month	↓ p = 0.63	↓ p =0.61		↑ p = 0.52
7 Month	↓ p =0.21	↓ p = 0.21	↓ p = 0.13	↓ p = 0.44
15 Month	↓ p = 0.001	↓ p =0.01	↑ p = 0.34	↑ p = 0.40

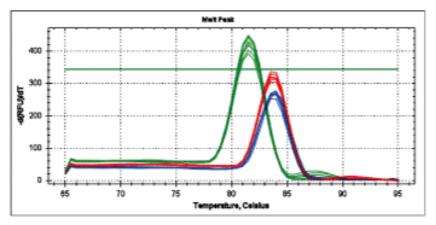

Table 9: Summary of statistical analysis of goblet cell numbers

Average number of goblet cells per 100 μ m of villus height and/or crypt depth of the ileum, caecum and distal colon in three, seven and fifteen month WT and APP/PS1 mice. \uparrow = increase, \downarrow = decrease in APP/PS1 compared to WT.

Denaturing Gradient Gel Electrophoresis (DGGE) analysis

15 month old mice


3 month old mice



qPCR analysis

Universal	926F	F: 5'-AAACTCAAAKGAATTGACGG-3'
	1062R	R: 5'-CTCACRRCACGAGCTGAC-3'
Firmicutes	928F	F: 5'-TGAAACTYAAAGGAATTGACG-3'
	1040R	R: 5'-ACCATGCACCACCTGTC-3'
Bacteroidetes	798cfbF	F: 5'-CRAACAGGATTAGATACCCT-3'
	cfb967R	R: 5'-GGTAAGGTTCCTCGCGTAT-3'
γ-Proteobacteria	1080γF	F: 5'-TCGTCAGCTCGTGTYGTGA-3'
	γ1202R	R: 5'-CGTAAGGGCCATGATG-3'

Normalised to 16s rDNA (Universal), and the relative abundances of each phylum determined using the delta delta Ct ($2-\Delta\Delta$ Ct) algorithm method

Differences in APP/PS1 vs. WT microbiota

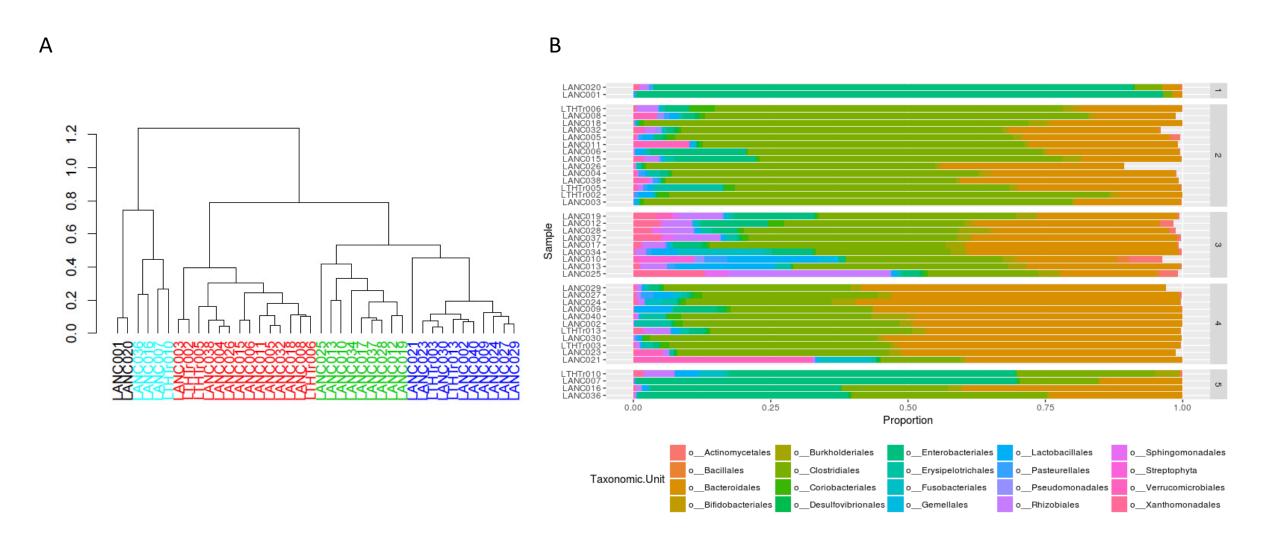
DGGE analysis

qPCR analysis

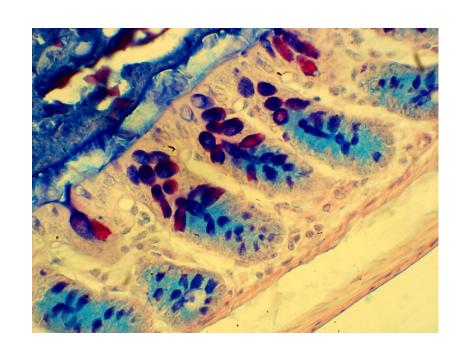
Mucosal:

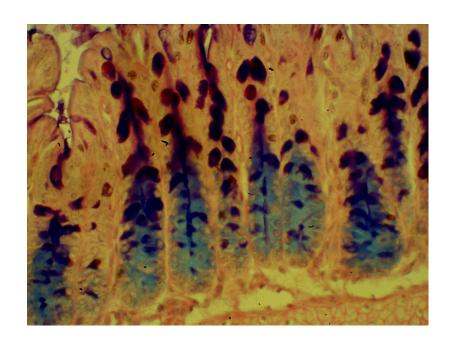
	Ileum	Caecum	Colon
3 Month		p = 0.04	
7 Month	p = 0.82	p = 0.82	p = 0.44
15 Month	p = 0.54	p = 0.24	p = 0.83

Luminal:


	Ileum	Caecum	Colon
3 Month		p = 0.66	
7 Month	p = 0.07	p = 0.81	p = 0.49
15 Month	p = 0.78	p = 0.87	p = 0.22

		Ileum	Caecum	Colon
3 month	Firmicutes		↑ p = 0.86	
	Bacteroidetes		↓ p =0.27	
7 month	Firmicutes	↓ p = 0.20	↑p = 0.92	↓ p = 0.05
	Bacteroidetes	↑p = 0.33	↑ p = 0.68	↑p = 0.92
15 month	Firmicutes	↓ p = 0.58	↓ p = 0.27	↓ p = 0.80
	Bacteroidetes	↑ p = 0.82	↑p = 0.31	↑p = 0.47


Table 11: Summary of statistical analysis of qRT-PCR data


Relative percentage change in the abundance of the two main phyla, Firmicutes and Bacteroidetes from mucosal associated microbiota of the ileum, caecum and distal colon in three, seven and fifteen-month WT and APP/PS1 mice. \uparrow = increase, \downarrow = decrease in in relative percentage change of phylum in APP/PS1 compared to WT.

Cohort 'Enterotypes' in Intestinal Microbiota Profiles

This afternoon - Practical experience Staining gut tissue

Goblet cells produce antibacterial mucin, impacts interaction with microbiome

Blue = Neutral

Pink = Acidic

Acknowledgements

Lancaster University

Dr Nicole Finn
Dr Jayde Whittingham-Dowd
Dr Emma Beamish
Dr Elisabeth Shaw
Dr Imtiyaz Thagia
Dr Emily Smith

Dr Karen Wright
Dr Neil Dawson
Dr John Worthington
Prof Christian Holscher

NHS Clinical Team

Dr Arnab Bhowmick Dr Albert Davies Dr Abhishek Sharma Judith Johnson

