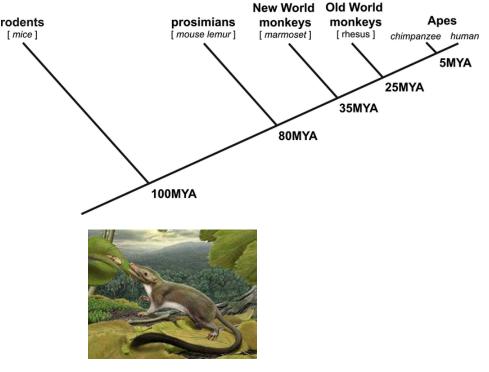


Biomedical & Lancaster Sciences

Preclinical (rodent) brain imaging: why and how?

Dr Neil Dawson Division of Biomedical and Life Sciences Faculty of Health and Medicine Lancaster University Lancaster LA1 4YQ Email: n.dawson1@lancaster.ac.uk

Overview

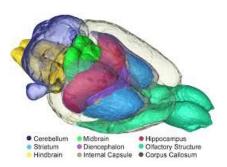

- Why image the brain in rodents?
- Why ¹⁴C-2-Deoxyglucose (¹⁴C-2-DG) Functional Brain Imaging
- How: an overview of the ¹⁴C-2-DG procedure
- One example of research from our lab

Why image the brain in rodents?

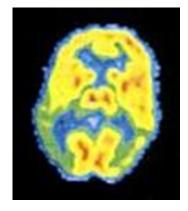
- Conservation between humans and rodents
 - Genetics

(protein coding genes ~85% similar)

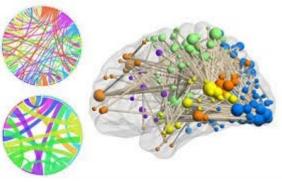
- Neurotransmitter systems
- Brain structure-function relationships
- Well controlled experiments in rodents
- Ethical considerations
- Useful models for:
 - Human brain diseases (psychiatric/neurodevelopmental)
 - Mechanistic insight
 - Validating interventions/drug treatments

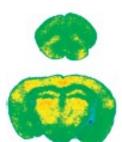


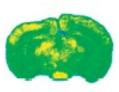
Last common Mammalian Ancestor 150 MYA

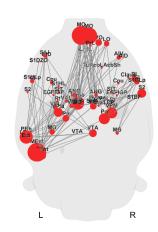

Types of imaging of the Human and Rodent Brain

Structural

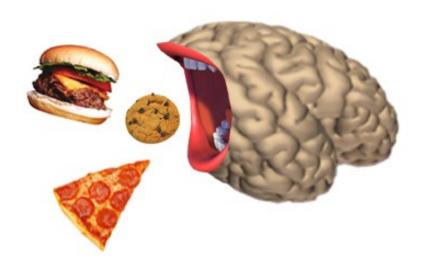





Functional Conne



Connectomes



Why ¹⁴C-2-Deoxyglucose functional brain imaging?

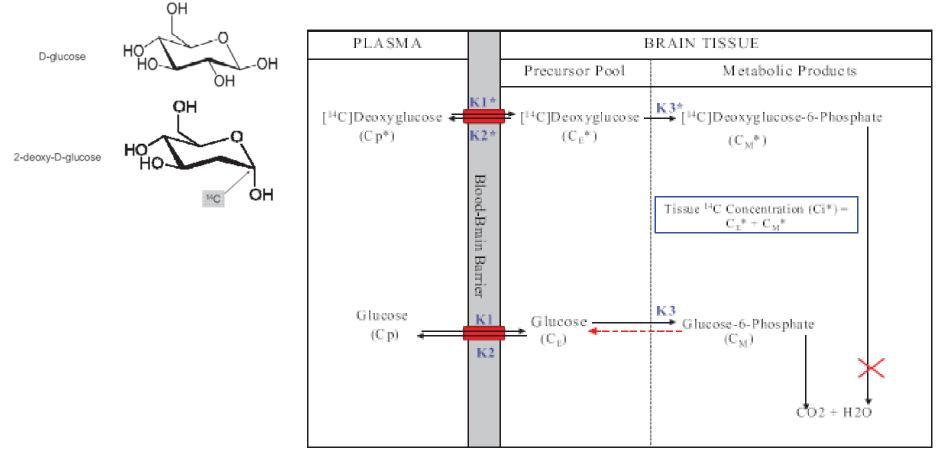
- Brain is 2% of body mass
- Consumes 20% of our daily energy intake
- Strongly prefers
 glucose as an energy
 source

¹⁴C-2-DG functional brain imaging – origin & practicalities

Journal of Neurochemistry, 1977, Vol. 28, pp. 897-916. Pergamon Press. Printed in Great Britain.

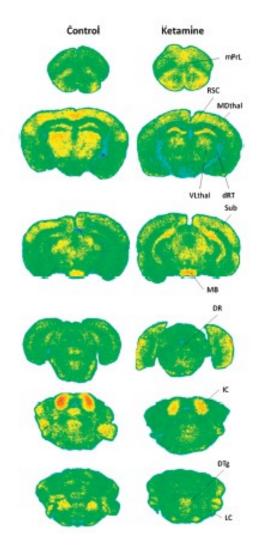
THE [¹⁴C]DEOXYGLUCOSE METHOD FOR THE MEASUREMENT OF LOCAL CEREBRAL GLUCOSE UTILIZATION: THEORY, PROCEDURE, AND NORMAL VALUES IN THE CONSCIOUS AND ANESTHETIZED ALBINO RAT¹

L. SOKOLOFF,² M. REIVICH,⁴ C. KENNEDY,^{2,3} M. H. DES ROSIERS,² C. S. PATLAK,⁵ K. D. PETTIGREW,⁵ O. SAKURADA² and M. SHINOHARA²


²Laboratory of Cerebral Metabolism, National Institute of Mental Health, Bethesda, MD 20014, U.S.A., ³Department of Pediatrics, Georgetown University School of Medicine, Washington, DC 20007, U.S.A., ⁴Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia PA 19174, U.S.A.

and

⁵Theoretical Statistics and Mathematics Branch, Division of Biometry and Epidemiology, National Institute of Mental Health, Bethesda, MD 20014, U.S.A.


(Received 3 November 1976. Accepted 12 January 1977)

¹⁴C-2-DG functional brain imaging – theoretical basis

45 minute time period 2-DG-P >> 2-DG

¹⁴C-2-DG functional brain imaging – adaptation for use in mice

- Sokoloff et al., method requires surgery (arterial and venous cannulation)
 - ¹⁴C-2-DG injection
 - blood sampling
- Sokoloff *et al*, method requires some restriction of movement – animals can't engage in behaviours over the time course of the experiment
- Dawson *et al.*, method adapted for application in freely moving, behaving mice

¹⁴C-2-DG functional brain imaging

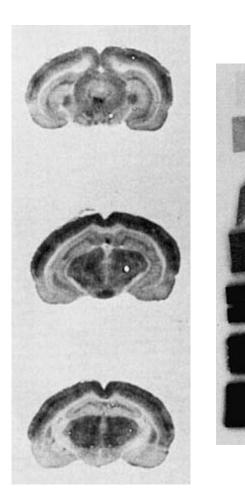
Step 1: Inject a tracer amount of ¹⁴C-2-deoxyglucose (4.625 MBq/kg, i.p.)

Step 2: place animal into home cage/behavioural testing environment

Step 3: 45 minutes after tracer injection humanely sacrifice animal

Step 4: Rapidly dissect out brain and flash freeze at -45°C in isopentane

Step 5: Collect a blood sample


- measure circulating ¹⁴C-2-DG levels (scintillation counter)
- measure circulating glucose levels (diabetes monitor)

Step 6: Section brain (20μm) and thaw mount sections onto glass cover slips

Step 7: Expose brain sections to x-ray film (7 days) along with calibrated ¹⁴C-standards

Step 8: Analyse autoradiographic images using MCID+ software to determine ¹⁴C-2-DG levels (reflecting rates of "local cerebral glucose utilisation (LCGU)") in brain "regions of interest (RoI)".

¹⁴C-2-DG functional brain imaging – autoradiograms & applications

Sokoloff et al., 1977 – cited > 6000 times

- Translational rodent models (e.g. stroke, epilepsy, neurodegenerative diseases, psychiatric disease, neurodevelopmental diseases)
- Drugs (e.g. amphetamine, ketamine, antipsychotics, MDMA)
- Response to environmental stimuli (e.g. odours, whisker stimulation)
- Parallels and theory fed into the development of the ¹⁸F-fluoro-2-deoxy-Dglucose (¹⁸F-FDG) PET imaging in man (Phelps et al., 1979)

¹⁴C-2-DG functional brain imaging

advantages

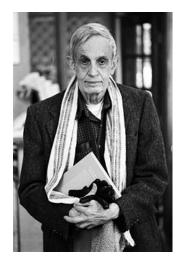
- Very well characterised
- Quantitative measure of brain region metabolism strongly linked to regional neuronal activity
- Excellent anatomical resolution (20 μm)
- Undertaken in conscious, freely moving (and sometimes behaving) animals - no anaesthesia required

disadvantages

- Limited temporal resolution metabolism over 45 minutes
- One off measurement excludes longitudinal studies in same animal
- Measurement can be confounded e.g. drug induced hyperglycaemia (measurable) or severe cerebral hypoperfusion (not easily determined in same animal)

An example from our lab

¹⁴C-2-DG Imaging in mice with truncated *Disc1*


Schizophrenia : The Disease

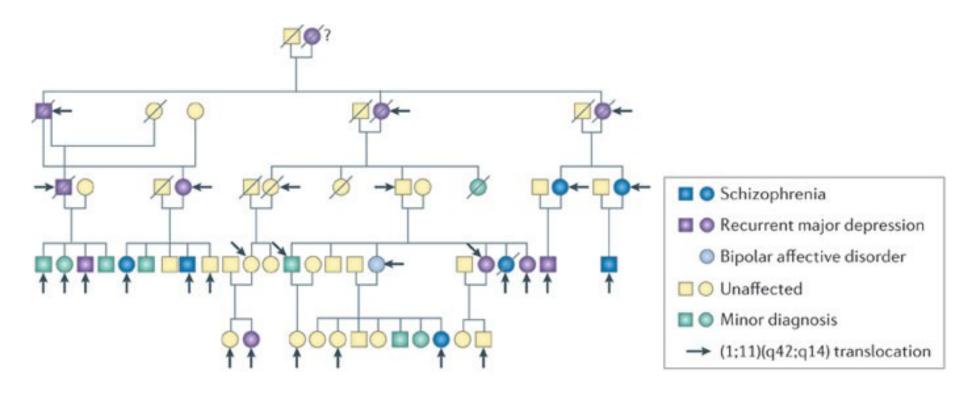
- Chronic, debilitating disorder affecting approximately 1% of the world's population.
- Positive Symptoms: Hallucinations and Delusions
- Negative Symptoms: Avolition (a lack of motivation), reduced Affect (reduced emotional responsiveness) and Anhedonia (inability to experience pleasure)
- **Cognitive Deficits**: Executive Function (attentional processing, cognitive flexibility) and Memory deficits
- Current medication only effective in a subset of patients, and only for the positive symptoms

Famous Schizophrenia Sufferer's

Syd Barrett, Pink Floyd

John Nash, Mathematician

"Hypofrontality" in Schizophrenia

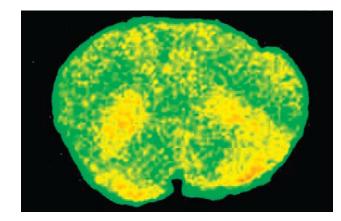

Schizophrenic Patient

- Reduced rate of cerebral metabolism found in the prefrontal cortex (PFC) of people with schizophrenia
- Contributes to cognitive problems in the disorder
- Images below are from ¹⁸F-FDG PET imaging

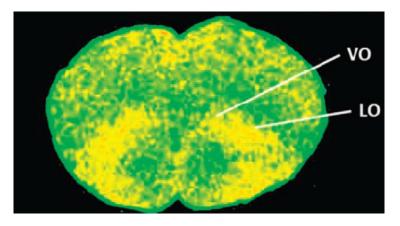
Healthy Control

PFC -

Disrupted-in-Schizophrenia-1 (DISC1) – a risk gene for psychiatric disorders

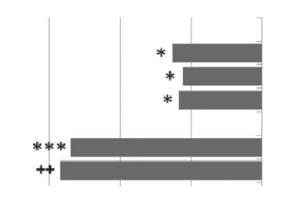


Nature Reviews | Neuroscience


- Family tree of Scottish family with truncated *DISC1*
- Breakpoint between exon 8 and 9 of the DISC1 gene

Brandon & Sawa, 2011. Nature Reviews Neuroscience 12:707

Mice with truncated *Disc1* show schizophrenia-like hypofrontality


Wild-type

Disc1 truncation

Prefrontal Cortex Lateral Orbital Cortex (LO) Ventral Orbital Cortex (VO) Dorsolateral Orbital Cortex (DLO) Thalamus

ventral Reticular Thalamus (vRT) dorsal Reticular Thalamus (dRT)

Dawson et al., 2015

• ¹⁴C-2-DG functional brain imaging:

- Allows us to characterise cerebral metabolism in rodents
- Cerebral metabolism indicates neuronal activity
- An important tool in translational neuroscience research